Mixture Mapping

Layers

Distributions

createCovMatrix(stdDevTensor, correlationTensor, size, name='CorrelationMatrix')[source]
createMixDistBYmeanCovWeight(meanTensor, covTensor, weightTensor, mixSize, matrixSize, name='GaussianMixture')[source]
createMixDistribution(meanTensor, stdDevTensor, correlationTensor, weightTensor, mixSize, matrixSize, name='GaussianMixture')[source]
regularizeCovMatrix(covMatrix, epsilon=0.999)[source]

Utils

getSkleanGM(weights, means, stdOrCov)[source]
lastEntryJacobian(ys, xs, use_pfor=True, parallel_iterations=None, name='Jacobian', stop_gradients=None)[source]

Binning

class BinningScheme[source]

Bases: object

append(input)[source]
property covariances
extend(input)[source]
property means
to_dict(batch_tiles=1)[source]
property weights
class SingleBin(means: 0, weights: 0, covariances: 0, area: 0, name: 0)[source]

Bases: object

area: 0
property as_gmm
covariances: 0
means: 0
name: 0
plot(dims=None, **C)[source]
sample(n)[source]
weights: 0
combine(bins)[source]
getPolygonBin(points, name=None, n=250, n_start=None, n_oversample=100.0, tol=0.1, max_iter=5000)[source]
getRangeBin(min, max, name=None, n=30, n_start=None, n_oversample=200.0, tol=0.01, max_iter=5000)[source]